Skip to main content

Nilanjan Sarkar

Chair, Department of Mechanical Engineering
David K. Wilson Professor of Engineering
Professor of Mechanical Engineering
Professor of Computer Engineering
Professor of Computer Science

Mechanical Engineering
Electrical and Computer Engineering
Computer Science

Intellectual Neighborhoods

Research Focus

I am interested in the analysis, design, and development of intelligent and autonomous systems that can work with people in a versatile and natural way. The applications of this research range from helping individuals with autism and other developmental disabilities in learning skills, aiding stroke patients to regain some of their movement abilities through robot-assisted rehabilitation, and providing more autonomy in robots for a variety of tasks. We are developing new generations of robots and computer-based intelligent systems such as virtual reality systems that can sense human emotion from various implicit signals and cues such as one’s physiology, gestures, facial expressions and so on, to be able to interact with people in a smooth and natural way. My current research involves both theoretical analysis and experimental investigation of electromechanical systems, sensor fusion and machine learning, modeling of human-robot and human-computer interaction, kinematics, dynamics and control theory leading to the development of these smart systems.

Current Projects

Robotics and Autonomous Systems Laboratory 
Professor Nilanjan Sarkar 
The focus of this laboratory is both theoretical investigation into the dynamics of mechanical and electro-mechanical systems and the application of advanced planning and control strategies for controlling such systems. Primary research efforts are on the dynamics and control of autonomous dynamic systems, such as robotic manipulators, mobile robots, mobile manipulators, and other robotic devices. The aim is to combine the advantages of several robotic systems to design a more versatile autonomous system. The potential applicaitions of such research can be in manufacturing, medical robotics, and in various service areas where robotic assistance is useful to the human operators. Other research interests of this laboratory include the areas of modeling and control of hybrid dynamic systems and biologically inspired robotics. Hybrid dynamic systems involve both discrete and continuous time dynamics and are useful in a variety of applications. Biologically inspired robotics seeks to improve the design and performance of robots by studying living systems (e.g., insects, animals, etc.). Future work will include the use of predictive virtual environments for autonomous exploration.

Teaching Interests

Dynamics, Control, and Robotics.


For a list of publications please click here.